首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical simulation of the noise generated by a low Mach number, low Reynolds number jet
Authors:Bendiks Jan Boersma
Institution:

J.M. Burgerscentre, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

Abstract:In this paper we study the sound field produced by a turbulent round jet with a Mach number of 0.6 based on the centerline velocity and the ambient speed of sound c. The turbulent flow field is found by solving the fully compressible Navier–Stokes equations with help of high-order compact finite difference schemes. It is shown that the simulated flow field is in good agreement with experiments. The corresponding sound field has been obtained with help of the Lighthill equation using two different formulations for the Lighthill stress tensor Tij. In the first formulation of Tij the fluctuating density is taken into account. In the second formulation the density is assumed to be constant. As an additional check we have also performed an acoustic calculation using a formulation in which a homogeneous wave equation is solved. The boundary conditions for this homogeneous wave equation are obtained from the numerical simulation of the Navier–Stokes equation. The results obtained with both formulations of the Lighthill stress tensor are nearly identical. This implies that an incompressible formulation of the conservations laws could be used to predict jet noise at low Mach numbers.
Keywords:DNS  Turbulence  Aeroacoustics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号