首页 | 本学科首页   官方微博 | 高级检索  
     


Industrial SBR Process: Computer Simulation Study for Online Estimation of Steady‐State Variables Using Neural Networks
Authors:Roque J. Minari  Georgina S. Stegmayer  Luis M. Gugliotta  Omar A. Chiotti  Jorge R. Vega
Affiliation:1. INTEC (CONICET ‐ Universidad Nacional del Litoral), Güemes 3450, 3000 Santa Fe, Argentina;2. CIDISI (CONICET ‐ Universidad Tecnológica Nacional), Lavaise 610, 3000 Santa Fe, Argentina;3. INGAR (CONICET ‐ Universidad Tecnológica Nacional), Avellaneda 3657, 3000 Santa Fe, Argentina;4. CIDISI (CONICET ‐ Universidad Tecnológica Nacional), Lavaise 610, 3000 Santa Fe, ArgentinaINTEC (CONICET ‐ Universidad Nacional del Litoral), Güemes 3450, 3000 Santa Fe, Argentina. Fax: (+54) 342 451 1079
Abstract:
This work investigates the industrial production of styrene‐butadiene rubber in a continuous reactor train, and proposes a soft sensor for online monitoring of several processes and polymer quality variables in each reactor. The soft sensor includes two independent artificial neural networks (ANN). The first ANN estimates monomer conversion, solid content, polymer production, average particle diameter, and average copolymer composition; the second ANN estimates average molecular weights and average branching degrees. The required ANN inputs are: (i) the reagent feed rates into the first reactor and (ii) the reaction heat rate in each reactor. The proposed ANN‐based soft sensor proved robust to several measurement errors, and is suitable for online estimation and closed‐loop control strategies.
image

Keywords:emulsion polymerization  monitoring  neural networks  rubber  soft sensors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号