首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Syntheses and characterization of six quaternary uranium chalcogenides a(2)m(4)u(6)q(17) (a = rb or cs; m = pd or pt; q = s or se)
Authors:George N Oh  Eun Sang Choi  Jun Lu  Lukasz A Koscielski  Matthew D Ward  Donald E Ellis  James A Ibers
Institution:Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States.
Abstract:The A(2)M(4)U(6)Q(17) compounds Rb(2)Pd(4)U(6)S(17), Rb(2)Pd(4)U(6)Se(17), Rb(2)Pt(4)U(6)Se(17), Cs(2)Pd(4)U(6)S(17), Cs(2)Pd(4)U(6)Se(17), and Cs(2)Pt(4)U(6)Se(17) were synthesized by the high-temperature solid-state reactions of U, M, and Q in a flux of ACl or Rb(2)S(3). These isostructural compounds crystallize in a new structure type, with two formula units in the tetragonal space group P4/mnc. This structure consists of a network of square-planar MQ(4), monocapped trigonal-prismatic UQ(7), and square-antiprismatic UQ(8) polyhedra with A atoms in the voids. Rb(2)Pd(4)U(6)S(17) is a typical semiconductor, as deduced from electrical resistivity measurements. Magnetic susceptibility and specific heat measurements on single crystals of Rb(2)Pd(4)U(6)S(17) show a phase transition at 13 K, the result either of antiferromagnetic ordering or of a structural phase transition. Periodic spin-polarized band structure calculations were performed on Rb(2)Pd(4)U(6)S(17) with the use of the first principles DFT program VASP. Magnetic calculations included spin-orbit coupling. With U f-f correlations taken into account within the GGA+U formalism in calculating partial densities of states, the compound is predicted to be a narrow-band semiconductor with the smallest indirect and direct band gaps being 0.79 and 0.91 eV, respectively.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号