首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting initial nucleation events occurred in a metastable nanodroplet during acoustic droplet vaporization
Institution:Chongqing Engineering Research Center of Medical Electronics and Information Technology, Department of Biomedical Engineering, School of Bioinformatics, Chongqing University of Posts and Telecommunications, Chongqing 400065, PR China
Abstract:Acoustic droplet vaporization (ADV) capable of converting liquid perfluorocarbon (PFC) micro/nanodroplets into gaseous microbubbles has gained much attention due to its medical potentials. However, its physical mechanisms for nanodroplets have not been well understood due to the disappeared superharmonic focusing effect and the prominent Laplace pressure compared to microdroplets, especially for the initial ADV nucleation occurring in a metastable PFC nanodroplet. The classical nucleation theory (CNT) was modified to describe the ADV nucleation via combining the phase-change thermodynamics of perfluoropentane (PFP) and the Laplace pressure effect on PFP nanodroplets. The thermodynamics was exactly predicted by the Redlich–Kwong equation of state (EoS) rather than the van der Waals EoS, based on which the surface tension of the vapor nucleus as a crucial parameter in the CNT was successfully obtained to modify the CNT. Compared to the CNT, the modified CNT eliminated the intrinsic limitations of the CNT, and it predicted a larger nucleation rate and a lower ADV nucleation threshold, which agree much better with experimental results. Furthermore, it indicated that the nanodroplet properties exert very strong influences on the nucleation threshold instead of the acoustic parameters, providing a potential strategy with an appropriate droplet design to reduce the ADV nucleation threshold. This study may contribute to further understanding the ADV mechanism for PFC nanodroplets and promoting its potential theranostic applications in clinical practice.
Keywords:Acoustic droplet vaporization  Bubble nucleation  Phase-change nanodroplets  Thermodynamics
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号