首页 | 本学科首页   官方微博 | 高级检索  
     


Recursive Estimation of Regression Functions by Local Polynomial Fitting
Authors:J. A. Vilar-Fernández  J. M. Vilar-Fernández
Affiliation:(1) Departamento de Matemáticas, Facultad de Informática, Universidad de A Coruña, 15071 A Coruña, Spain
Abstract:The recursive estimation of the regression function m(x) = E(Y/X = x) and its derivatives is studied under dependence conditions. The examined method of nonparametric estimation is a recursive version of the estimator based on locally weighted polynomial fitting, that in recent articles has proved to be an attractive technique and has advantages over other popular estimation techniques. For strongly mixing processes, expressions for the bias and variance of these estimators are given and asymptotic normality is established. Finally, a simulation study illustrates the proposed estimation method.
Keywords:Recursive nonparametric estimation  regression models  local polynomial fitting  strongly mixing processes
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号