首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of shear-induced and extensional-induced associating polymer assemblies: Brownian dynamics simulation
Authors:Yeom Min Sun  Lee Jysoo
Institution:Supercomputing Application Technologies Department, Korea Institute of Science and Technology Information, Daejeon 305-806, Korea. msyeom@kisti.re.kr
Abstract:In order to examine the difference between shear-induced and extensional-induced associating polymer assemblies at the molecular level, Brownian dynamics simulations with the bead-spring model were carried out for model DNA molecules with sticky spots. The radial distribution of molecules overestimates from that in the absence of flow and increases with increasing Weissenberg number in extensional flow, but slightly underestimates without regard to shear rate in shear flow. The fractional extension progresses more rapidly in extensional flow than in shear flow and the distribution of fractional extension at the formation time has a relatively sharper peak and narrower spectrum in extensional flow than in shear flow. In shear flow, the inducement of the assembly mainly results from the progress of the probability distribution of fractional extension. However, in extensional flow, the assembly is induced by both the progress of the probability distribution and increasing the values of the radial distribution.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号