首页 | 本学科首页   官方微博 | 高级检索  
     检索      

自旋转换-氧化石墨烯纳米复合材料的制备及磁性
引用本文:王玉侠,邱丹,奚赛飞,丁正东,顾志国,李在均.自旋转换-氧化石墨烯纳米复合材料的制备及磁性[J].无机化学学报,2013,29(18).
作者姓名:王玉侠  邱丹  奚赛飞  丁正东  顾志国  李在均
作者单位:江南大学化学与材料工程学院, 无锡 214122,江南大学化学与材料工程学院, 无锡 214122,江南大学化学与材料工程学院, 无锡 214122,江南大学化学与材料工程学院, 无锡 214122,江南大学化学与材料工程学院, 无锡 214122;食品胶体与生物技术教育部重点实验室, 无锡 214122,江南大学化学与材料工程学院, 无锡 214122
基金项目:国家自然科学基金(No.21101078,21276105)和江苏省双创团队资助项目。
摘    要:利用氧化石墨烯(GO)表面具有丰富含氧基团的特点,采用原位生长法将经典的亚铁三氮唑自旋转换(SCO)配位聚合物Fe(Htrz)2(trz)](BF4)负载到二维材料GO的表面。利用X射线粉末衍射(PXRD)、红外光谱(FTIR)、SEM、TEM、拉曼等手段对自旋转换-氧化石墨烯(SCO-GO)纳米复合材料进行了表征。通过光谱表征发现,复合材料的FTIR和PXRD特征峰为GO和Fe(Htrz)2(trz)](BF4)特征峰的叠加,初步证明了自旋转换-氧化石墨烯纳米复合材料已成功制备。SEM和TEM分析直观地显示立方体状的Fe(Htrz)2(trz)](BF4)纳米颗粒均匀地分散在氧化石墨烯表面,且随着原位生长时间的增加,GO表面的Fe(Htrz)2(trz)](BF4)的负载量增加、尺寸增大。拉曼图谱表明Fe(Htrz)2(trz)](BF4)负载到GO表面后,氧化石墨烯特征拉曼峰的强度比(ID/IG)增大,说明氧化石墨烯的缺陷密集程度增大,Fe(Htrz)2(trz)](BF4)纳米颗粒与石墨烯之间的作用力增强。磁性测试表明不同自组装时间(1、6、12 h)的SCO-GO复合材料的T1/2↑分别为381.1、381.5和382.4 K,T1/2↓分别为345.9、345.0和344.8 K,其磁滞回线宽度分别为35.2、36.5和37.6 K,这是由于不同自组装时间的SCO-GO复合材料中Fe(Htrz)2(trz)](BF4)的负载量和尺寸的差异导致的。DSC分析结果和磁性结果一致,证实了SCO-GO复合材料自旋转变温度向高温区移动。

关 键 词:氧化石墨烯  自旋转换  原位生长  纳米复合材料
收稿时间:2016/4/28 0:00:00
修稿时间:2016/8/11 0:00:00

Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites
WANG Yu-Xi,QIU Dan,XI Sai-Fei,DING Zheng-Dong,GU Zhi-Guo and LI Zai-Jun.Fabrication and Magnetic Property of Spin Crossover-Graphene Oxide Nanocomposites[J].Chinese Journal of Inorganic Chemistry,2013,29(18).
Authors:WANG Yu-Xi  QIU Dan  XI Sai-Fei  DING Zheng-Dong  GU Zhi-Guo and LI Zai-Jun
Institution:School of Chemistry and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China,School of Chemistry and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China,School of Chemistry and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China,School of Chemistry and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China,School of Chemistry and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China;The Key Laboratory of Food Colloids and Biotechnology, Wuxi, Jiangsu 214122, China and School of Chemistry and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
Abstract:he in-situ growth method were used to produce theFe(Htrz)2(trz)](BF4)-GO nanocomposites due to the abundant oxygen functional groups on the surface of the GO templates. TheFe(Htrz)2(trz)](BF4)-GO nanocomposites have been characterized by PXRD, FTIR, SEM, TEM, Raman spectra. The peaks of FTIR and PXRD patterns of the nanocomposites are nearly the superposition of the spectra of individual GO andFe(Htrz)2(trz)](BF4), demonstrating the successful formation of spin crossover-graphene oxide nanocomposites. SEM and TEM analysis intuitively shows the cubicFe(Htrz)2(trz)](BF4) nanoparticles uniformly anchored on the surface of GO. Additionally, with the assembly time increasing, the quantity and size ofFe(Htrz)2(trz)](BF4) on the surface of the GO increase gradually. Raman spectra indicates that the intensity ratio of the D to G band (ID/IG) increases after theFe(Htrz)2(trz)](BF4) loaded onto the surface of GO, which reveals that the defects in GO materials structures increase, and the interaction betweenFe(Htrz)2(trz)](BF4) nanoparticles and GO strengthens. Magnetic measurement manifests the transition temperatures of SCO-GO nanocomposites with different assembly time (1, 6, 12 h) are 381.1, 381.5 and 382.4 K in warming, 345.9, 345.0 and 344.8 K in cooling with the hysteresis width of 35.2, 36.5 and 37.6 K, respectively. This is attributed to the variation in the capacity and size ofFe(Htrz)2(trz)](BF4) in SCO-GO nanocomposites with different assembly time. The result of DSC analysis is consistent with the magnetic result, confirming that the spin transition temperatures of SCO-GO nanocomposites move to high temperature.
Keywords:graphene oxide  spin-crossover  in-situ growth  nanocomposites
点击此处可从《无机化学学报》浏览原始摘要信息
点击此处可从《无机化学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号