Generalized Control Systems in the Space of Probability Measures |
| |
Authors: | Giulia Cavagnari Antonio Marigonda Khai T. Nguyen Fabio S. Priuli |
| |
Affiliation: | 1.Dipartimento di Matematica,Università di Trento,Trento,Italy;2.Department of Computer Science,University of Verona,Verona,Italy;3.Department of Mathematics,North Carolina State University,Raleigh,USA;4.Istituto per le Applicazioni del Calcolo “M.Picone”,Consiglio Nazionale delle Ricerche,Roma,Italy |
| |
Abstract: | In this paper we formulate a time-optimal control problem in the space of probability measures. The main motivation is to face situations in finite-dimensional control systems evolving deterministically where the initial position of the controlled particle is not exactly known, but can be expressed by a probability measure on (mathbb {R}^{d}). We propose for this problem a generalized version of some concepts from classical control theory in finite dimensional systems (namely, target set, dynamic, minimum time function...) and formulate an Hamilton-Jacobi-Bellman equation in the space of probability measures solved by the generalized minimum time function, by extending a concept of approximate viscosity sub/superdifferential in the space of probability measures, originally introduced by Cardaliaguet-Quincampoix in Cardaliaguet and Quincampoix (Int. Game Theor. Rev. 10, 1–16, 2008). We prove also some representation results linking the classical concept to the corresponding generalized ones. The main tool used is a superposition principle, proved by Ambrosio, Gigli and Savaré in Ambrosio et al. [3], which provides a probabilistic representation of the solution of the continuity equation as a weighted superposition of absolutely continuous solutions of the characteristic system. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|