首页 | 本学科首页   官方微博 | 高级检索  
     

结构经济序列分析的状态空间方法
引用本文:郭向军 顾岗. 结构经济序列分析的状态空间方法[J]. 数理统计与管理, 1992, 11(5): 55-60,40
作者姓名:郭向军 顾岗
作者单位:中国人民大学统计学系(郭向军),中国人民大学统计学系(顾岚)
摘    要:本文讨论结构经济时间序列用状态空间模型进行分解处理的方法.在§1中综述结构时间序列的状态空间描述.§2中着重论述了将处理不完全数据的EM-算法应用于状态空间模型参数的极大似然估计.在§3中给出采用本文所述方法对一些我国宏观经济序列的计算实例.

关 键 词:状态空间  季节调整  卡尔曼滤波  随机趋势  结构经济序列  似然  EM算法

State Space Method for Structural Economic Time Series
Guo Xiangjun,Gu Lan. State Space Method for Structural Economic Time Series[J]. Application of Statistics and Management, 1992, 11(5): 55-60,40
Authors:Guo Xiangjun  Gu Lan
Abstract:A economic time series model can be decomposed directly in terms of the components of trend, seasonal, cycle and irregular, Each component is cha- racterized by unknown variance-white noise perturbed difference equation of AR model constraints. The constraints are expressed in state space model form. Kalman filter is used to compute maximum likelihood and estimate parameter. In our paper, indirect maximization of the likelihoop function via the EM algorithm is substituted for direct maximization of likelihood function via Newton algorithm, etc. Exmaples of economic time series in our country are given.
Keywords:State space Structural time series seasonal adjustment likelihood Kalman filter EM algorithm Stochastic trend  
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号