首页 | 本学科首页   官方微博 | 高级检索  
     

采用可见/近红外光谱检测大麦叶片过氧化氢酶与过氧化物酶含量的研究
引用本文:赵芸,张初,刘飞,孔汶汶,何勇. 采用可见/近红外光谱检测大麦叶片过氧化氢酶与过氧化物酶含量的研究[J]. 光谱学与光谱分析, 2014, 34(9): 2382-2386. DOI: 10.3964/j.issn.1000-0593(2014)09-2382-05
作者姓名:赵芸  张初  刘飞  孔汶汶  何勇
作者单位:1. 浙江科技学院信息与电子工程学院,浙江 杭州 310023
2. 浙江大学生物系统工程与食品科学学院,浙江 杭州 310058
基金项目:国家(863计划)课题项目(2013AA102405), 国家自然科学基金项目(31201137)和中央高校基本科研业务费专项资金项目(2014FZA6005)资助
摘    要:采用可见/近红外光谱对丙酯草醚胁迫下大麦叶片过氧化氢酶(catalase, CAT)与过氧化物酶(peroxidase, POD)含量预测进行研究。对500~900 nm光谱采用移动平均法(moving average, MA)11点平滑方法进行预处理。采用蒙特卡罗-偏最小二乘法(monte carlo-partial least squares, MCPLS)方法分别对于CAT与POD的含量预测剔除7个与8个异常样本。基于全部光谱建立了CAT与POD含量预测的PLS,最小二乘支持向量机(least-squares support vector machine, LS-SVM)与极限学习机(extreme learning machine, ELM)模型,ELM模型对CAT含量预测效果最好,建模集相关系数(correlation coefficient of calibration, Rc)为0.916,预测集相关系数Rp为0.786;PLS模型对POD含量预测效果最佳,Rc为0.984,Rp为0.876。采用连续投影算法(successive projections algorithm, SPA)算法分别为CAT与POD预测选择了8个与19个特征波长,基于特征波长建立的PLS,LS-SVM与ELM模型中,ELM模型对CAT与POD含量预测效果均最佳,CAT含量预测的相关系数为Rc=0.928,Rp=0.790;POD含量预测的相关系数Rc=0.965,Rp=0.941。基于全谱与基于特征波长的回归分析模型预测效果相当,且对POD含量的预测效果优于对CAT含量的预测效果,而这需要进一步研究以得到精度和稳定性更高的预测模型。研究结果表明,采用可见/近红外光谱结合化学计量学方法可以实现对除草剂胁迫下大麦叶片CAT与POD含量的预测。

关 键 词:可见/近红外光谱  大麦  丙酯草醚  过氧化氢酶  过氧化物酶   
收稿时间:2014-04-14

Application of Visible/Near-Infrared Spectroscopy to the Determination of Catalase and Peroxidase Content in Barley Leaves
ZHAO Yun;ZHANG Chu;LIU Fei;KONG Wen-wen;HE Yong. Application of Visible/Near-Infrared Spectroscopy to the Determination of Catalase and Peroxidase Content in Barley Leaves[J]. Spectroscopy and Spectral Analysis, 2014, 34(9): 2382-2386. DOI: 10.3964/j.issn.1000-0593(2014)09-2382-05
Authors:ZHAO Yun  ZHANG Chu  LIU Fei  KONG Wen-wen  HE Yong
Affiliation:1. School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China2. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
Abstract:Visible/near-infrared spectroscopy was applied to determine the content of catalase (CAT) and peroxidase (POD) in barley leaves under the herbicide stress of propyl 4-(2-(4, 6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoate (ZJ0273). The spectral data of the barley leaves in the range of 500~900 nm were preprocessed by moving average with 11 points. Seven outlier samples for CAT and 8 outlier samples for POD were detected and removed by Monte Carlo-partial least squares (MCPLS). PLS, least-squares support vector machine (LS-SVM) and extreme learning machine (ELM) models were built for both CAT and POD. ELM model obtained best results for CAT, with correlation coefficient of calibration (Rc) of 0.916 and correlation coefficient of prediction (Rp) of 0.786. PLS model obtained best prediction results for POD, with Rc of 0.984 and Rp of 0.876. Successive projections algorithm (SPA) was applied to select 8 and 19 effective wavelengths for CAT and POD, respectively. PLS, LS-SVM and ELM models were built using the selected effective wavelengths of CAT and POD. ELM model performed best for CAT and POD prediction, with Rc of 0.928 and Rp of 0.790 for CAT and Rc of 0.965 and Rp of 0.941 for POD. The prediction results using the full spectral data and the effective wavelengths were quite close, and the prediction performance for POD was much better than the prediction performance for CAT, and the studies should be further explored to build more precise and more robust models for CAT and POD determination. The overall results indicated that it was feasible to use visible/near-infrared spectroscopy for CAT and POD content determination in barley leaves under the stress of ZJ0273.
Keywords:Visible/near-infrared spectroscopy  Barley  Propyl 4-(2-(4, 6-dimethoxypyrimidin-2-yloxy) benzylamino) benzoate  Catalase  Peroxidase
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号