Abstract: | We show that in an unsteady Poiseuille flow of a Navier–Stokes fluid in an infinite straight pipe of constant cross-section, σ, the flow rate, F(t), and the axial pressure drop, q(t), are related, at each time t, by a linear Volterra integral equation of the second type, where the kernel depends only upon t and σ. One significant consequence of this result is that it allows us to prove that the inverse parabolic problem of finding a Poiseuille flow corresponding to a given F(t) is equivalent to the resolution of the classical initial-boundary value problem for the heat equation. |