首页 | 本学科首页   官方微博 | 高级检索  
     


Dynamic nature of the intramolecular electronic coupling mediated by a solvent molecule: a computational study
Authors:Troisi Alessandro  Ratner Mark A  Zimmt Matthew B
Affiliation:Department of Chemistry, Materials Research Center and Center for Nanofabrication and Molecular Self-Assembly, Northwestern University, Evanston, Illinois, USA. triosi@ciam.unibo.it
Abstract:We present a combined Molecular Dynamics/Quantum Chemical study of the solvent-mediated electronic coupling between an electron donor and acceptor in a C-clamp molecule. We characterize the coupling fluctuations due to the solvent motion for different solvents (acetonitrile, benzene, 1,3-diisopropyl-benzene) for the charge separation and the charge recombination processes. The time scale for solvent-induced coupling fluctuation is approximately 0.1 ps. The effect of these fluctuations on the observed rate is discussed using a recently developed theoretical model. We show that, while the microscopic charge transfer process is very complicated and its computational modeling very subtle, the macroscopic phenomenology can be captured by the standard models. Analyzing the contribution to the coupling given by different solvent orbitals, we find that many solvent orbitals mediate the electron transfer and that paths through different solvent orbitals can interfere constructively or destructively. A relatively small subset of substrate-solvent configurations dominate contributions to solvent-mediated coupling. This subset of configurations is related to the electronic structure of the C-clamp molecule.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号