首页 | 本学科首页   官方微博 | 高级检索  
     


Multifrequency EPR of four triarylmethyl radicals
Authors:A. J. Fielding  P. J. Carl  G. R. Eaton  S. S. Eaton
Affiliation:1. Department of Chemistry and Biochemistry, University of Denver, 80208-2436, Denver, CO, USA
2. EPR Division, Bruker BioSpin GmbH, Rheinstetten, Germany
Abstract:
Continuous-wave spectra at W-band of four triarylmethyl (trityl) radicals at 100 K in 1∶1 water-glycerol exhibit rhombic electron paramagnetic resonance spectra. The rigid-lattice line widths at W-band are only 3 to 5 times larger than at X-band or S-band, and fluid-solution line widths are much narrower than those for rigid lattice, which indicates that unresolved anisotropic nuclear hyperfine couplings make significant contributions to the rigid-lattice line widths. Spin-flip lines are observed in glassy-solution spectra at X-band and S-band, but not at W-band or 250 MHz. At 100 KT m is dominated by spin diffusion of solvent protons and is independent of microwave frequency. Between about 130 and 170 K, 1/T m for trityl-CH3 is enhanced by rotation of the methyl groups at a rate comparable to inequivalences in the hyperfine interaction. Motional averaging of anisotropic interactions enhances spin echo dephasing between about 200 and 300 K. The temperature dependence of 1/T 1 is similar for the four radicals and is consistent with assignment of the Raman process and a local mode as the dominant relaxation processes. The similarity inT 1 values at W-band and X-band supports this assignment.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号