首页 | 本学科首页   官方微博 | 高级检索  
     


Computational estimates of the gas-phase basicities,proton affinities and ionization potentials of the six isomers of dihydroxybenzoic acid
Authors:Faten H. Yassin  Dennis S. Marynick
Affiliation:Faten H. Yassin,Dennis S. Marynick *
Abstract:
The gas-phase basicities (GBs), gas-phase proton affinities (PAs) and ionization potentials (IPs) of all six isomers of dihydroxybenzoic acid have been calculated using density functional theory at the B3LYP/6-311++G(2df,p)//B3LYP/6-31+G** level. A detailed conformational analysis of each isomer was performed, and the calculated thermodynamic properties were Boltzmann averaged over all conformations. Respectively, the GBs and the gas-phase PAs vary from 803.8 and 832.5?kJ?mol?1 for the least basic species (3,5-DHB) to 830.1 and 861.4?kJ?mol?1 for the most basic isomer (2,4-DHB). The reported GBs and gas-phase PAs of 2,3-DHB and 2,4-DHB, are in excellent agreement with previous experimental measurements. Agreement for the 2,5-DHB and 3,4-DHB isomers are not as good, but still close to or within the experimental error estimates. The calculated values for the GB and gas-phase PA of 2,6-DHB and especially 3,5-DHB are significantly outside the experimental error brackets. Repeating these calculations on the lowest energy conformation of each isomer at the MP2/6-311++G(2df,p)//MP2/6-31+G** level yielded significantly worse results. Our results indicate that protonation in all isomers takes place on the carboxylic sites. The vertical IPs vary from 8.14 eV for 2,5-DHB to 8.56 eV for 2,4-DHB.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号