首页 | 本学科首页   官方微博 | 高级检索  
     


DFT study of hydrogen storage in Pd-decorated C60 fullerene
Authors:A. M. El Mahdy
Affiliation:1. Department of Physics, Faculty of Education, Ain Shams University, Cairo, Egypta_m_elmahdy@hotmail.com
Abstract:Hydrogen storage reactions on Pd-doped C60 fullerene are investigated by using the state-of-the-art density functional theory calculations. The Pd atom prefers to bind at the bridge site between two hexagonal rings, and can bind up to four hydrogen molecules with average adsorption energies of 0.61, 0.45, 0.32, and 0.21 eV per hydrogen molecule. With no metal clustering, the system gravimetric capacities are expected to be as large as 5.8 wt%. While the desorption activation barriers of the complexes nH2 + Pd–C60 with n = 1 are outside the department of energy (DOE) domain (?0.2 to ?0.6 eV), the desorption activation barriers of the complexes nH2 + Pd–C60 with n = 2–4 are inside this domain. While the interaction of 1H2 with Pd + C60 is irreversible at 459 K, the interaction of 2H2 with Pd + C60 is reversible at 529 K. The hydrogen storage of the irreversible 1H2 + Pd–C60 and reversible 2H2 + Pd–C60 interactions are characterised in terms of densities of states, infrared, Raman, and proton magnetic resonance spectra, electrophilicity, and statistical thermodynamic stability.
Keywords:density functional theory  hydrogen storage  palladium complexes  thermodynamic stability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号