首页 | 本学科首页   官方微博 | 高级检索  
     


On Least Squares Estimation for Stable Nonlinear AR Processes
Authors:Jian-Feng Yao
Affiliation:(1) SAMOS, Université, Paris I, 90 rue de Tolbiac, F-75634 Paris Cedex 13, France
Abstract:Following a Markov chain approach, this paper establishes asymptotic properties of the least squares estimator in nonlinear autoregressive (NAR) models. Based on conditions ensuring the stability of the model and allowing the use of a strong law of large number for a wide class of functions, our approach improves some known results on strong consistency and asymptotic normality of the estimator. The exact convergence rate is established by a law of the iterated logarithm. Based on this law and a generalized Akaike's information criterion, we build a strongly consistent procedure for selection of NAR models. Detailed results are given for familiar nonlinear AR models like exponential AR models, threshold models or multilayer feedforward perceptions.
Keywords:Nonlinear AR process  least squares estimation  law of the iterated logarithm  model selection  multilayer perception
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号