首页 | 本学科首页   官方微博 | 高级检索  
     


Hydrogen electrosorption in nanocrystalline Ti-based alloys
Authors:Lionel Rou  , Daniel Guay,Robert Schulz
Affiliation:Lionel Roué, Daniel Guay,Robert Schulz
Abstract:The electrochemical behavior in alkaline solution (1 M NaOH) of nanocrystalline Ti:Ru:Fe:O (2:1:1:2) prepared by high-energy ball milling was studied over its whole electroactivity domain, with a particular emphasis on the hydrogen evolution reaction (her). Comparison has also been made with nanocrystalline Ti:Ru:Fe (2:1:1) and a mixture of Ti:TiO:Ru:Fe2O3 (3/2:1/2:1:1/2). It was shown by cyclic voltammetry, open circuit potential decay and chronopotentiometry measurements that hydrogen absorption in the electrode material occurs during hydrogen discharge. The electrochemical behavior of nanocrystalline Ti:Ru:Fe:O (2:1:1:2) closely follows that of Ti:Ru:Fe (2:1:1), but differs radically from that of Ti:TiO:Ru:Fe2O3 (3/2:1/2:1:1/2). This is due to the fact that the former two compounds contain a significant fraction of B2 phase (59 and 97 wt.%, respectively), while the latter does not. In steady state conditions, the ratio H/B2 phase in nanocrystalline Ti:Ru:Fe:O (2:1:1:2) is 0.15, about 1.6 times less than that for the O-free nanocrystalline compound. The coefficient of diffusion of hydrogen in nanocrystalline Ti:Ru:Fe:O (2:1:1:2) is 2.6×10−13 cm2 s−1, more than three times less than that in nanocrystalline Ti:Ru:Fe (2:1:1). The difference between the hydrogen absorption characteristics of both nanocrystalline compounds are tracked down to the fact that their B2 phases have different stoichiometries.
Keywords:Nanocrystalline alloy   Hydrogen evolution   Hydrogen absorption   Ball milling   Electrocatalyst
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号