Affiliation: | aComputational Biology Research Center (CBRC), National Institute of Advanced Industrial Science and Technology (AIST), 2-42 Aomi, Koto-ku, Tokyo 135-0064, Japan bGrid Technology Research Center (GTRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan cApplying Advanced Computational Science and Technology of Japan Science and Technology Agency (ACT-JST), Tokyo, Japan |
Abstract: | A reaction mechanism of a nitric oxide reductase, cytochrome P450nor (P450nor) from Fusarium oxysporum, was clarified by using Density functional theory and Hartree–Fock calculations. In this reaction mechanism, molecular orbital (MO) analysis revealed that the NO ligand dissociates from the heme iron immediately after one-electron reduction by NADH, and MO energy analysis revealed that NADH acts as a one-electron reducer, not as a two-electron reducer, and that NADH has a pivotal role different from other one-electron reducers. The role of NADH is to act as a double one-electron donor (i.e. one-electron transfer occurring twice) and to combine with the NO− molecule by charge recombination reaction. Our quantum chemical calculations indicated that all reactions occurring in the heme pocket are too fast to become rate-limiting. Therefore, the rate-limiting steps in the proposed reaction mechanism are the process of capturing NO and NADH into the heme pocket and the process of expelling a product generated in the heme pocket. Kinetics of these processes was discussed based on large-amplitude vibration, which helps capturing and expelling processes in a widely opened heme pocket of P450nor. The reaction mechanism proposed here well explains published experimental data. |