首页 | 本学科首页   官方微博 | 高级检索  
     


An Enhanced Photothermal Therapeutic Iridium Hybrid Platform Reversing the Tumor Hypoxic Microenvironment
Authors:Hang Zhang  Xiaoxiao Chen  Shengliang Li  Jianliang Shen  Zong-Wan Mao
Abstract:
As hypoxia is closely associated with tumor progression, proliferation, invasion, metastasis, and strong resistance to therapy, regulating and overcoming the hypoxia tumor microenvironment are two increasingly important aspects of tumor treatment. Herein, we report a phototherapeutic platform that uses the organic photosensitizer diketopyrrolopyrrole (DPP) derivative and inorganic iridium salts (IrCl3) with photothermal activity and the capacity to decompose H2O2 efficiently. The characterization of their photophysical properties proved that DPP-Ir nanoparticles are capable of remarkable near-infrared (NIR) absorption, and compared to DPP nanoparticles, the photothermal conversion efficiency (PCE) increases from 42.1% in DPP nanoparticles to 67.0% in DPP-Ir nanoparticles. The hybrid nanoparticles utilize the catalytic decomposition of endogenous H2O2 to produce oxygen for the downregulation of the hypoxia-inducible factor 1 subunit alpha (HIF-1α) protein, which could reverse the tumor hypoxic microenvironment. Benefiting from the excellent optical properties and good biocompatibility, the hybrid platform exhibits efficient photothermal therapeutic effects as well as good biological safety. In conclusion, such a hybrid platform could improve photothermal therapy against cancer.
Keywords:hypoxia   diketopyrrolopyrrole   photothermal therapy   catalyze H2O2   hybrid platform
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号