The dependence of the kinetics of some simple outer-sphere electrode reactions on the nature of the electrode material |
| |
Authors: | Stephen W. Barr Kendall L. Guyer Michael J. Weaver |
| |
Affiliation: | Department of Chemistry, Michigan State University, East Lansing, MI 48824, U.S.A. |
| |
Abstract: | ![]() The kinetics of a number of simple inorganic electrode reactions that are known or expected to follow outer-sphere pathways have been examined at mercury, silver, platinum, and gold-aqueous interfaces in order to explore the effects of varying the electrode material on outer-sphere reactivity. The electroreduction kinetics of Co(III) ammine complexes exhibited only mild dependences on the nature of the electrode material which were compatible with the expected variations in double-layer effects. However, the electrooxidation of Cr2+ proceeded at strikingly higher overpotentials on the solid surfaces compared with mercury electrodes. Similar effects were also seen for the electrooxidation of V2+, Eu2+ and Ru2+ in the presence of Cr2+. Much larger rate constants were observed for these aquo reactions at solid surfaces in the absence of Cr2+, although Cr2+ had no influence on Co(NH3)63+ electroreduction, or any reaction at mercury electrodes. It is speculated that the very large substrate effects upon the electrode kinetics of aquo couples arise from the influence of the inner-layer water structure on the reactant-solvent interactions experienced by these “structure-making” reactants at their plane of closest approach. The inhibiting influence of Cr2+ may be due to its ability to efficiently remove adsorbed catalytic contaminants by incorporation into a substitutionally inert Cr(III) electrooxidation product by means of a ligand-bridge mechanism. |
| |
Keywords: | To whom correspondence should be addressed. |
本文献已被 ScienceDirect 等数据库收录! |
|