首页 | 本学科首页   官方微博 | 高级检索  
     


Multi-commodity supply network planning in the forest supply chain
Authors:Satyaveer S. Chauhan  Jean-Marc Frayret  Luc LeBel
Affiliation:1. Concordia University, Montreal, Quebec, Canada;2. Ecole polytechnique de Montreal, Quebec, Canada G1K7P4;3. Faculte de foresterie et de geomatique, Universite Laval, Quebec, Canada
Abstract:
We consider in this paper a two echelon timber procurement system in which the first echelon consists of multiple harvesting blocks and the second echelon consists of multiple mills (e.g., sawmills), both distributed geographically. Demand is put forward by mills in the form of volumes of logs of specific length and species. Due to the impact of log handling and sorting on cut-to-length harvester and forwarder productivity [Gingras, J.-F., Favreau, J., 2002. Incidence du triage sur la productivité des systèmes par bois tronçonnés. Avantage 3], the harvesting cost per unit volume increases as the number of product variety harvested per block increases. The overall product allocation problem is a large scale mixed integer programming problem with the objective of minimizing combined harvesting and aggregated transportation costs, under demand satisfaction constraints. A heuristic is first introduced then, an algorithm based on the branch-and-price approach is proposed for larger scale problems. Experimentations compare solutions found with the heuristic with the corresponding optimal solutions obtained with both Cplex (using the branch-and-bound approach) and the branch-and-price approach. Results demonstrate the good performance level of the heuristic approach for small scale problems, and of the branch-and-price approach for large scale problems.
Keywords:Supply planning   Integer programming   Dynamic programming   Branch-and-price   Cut-to-length timber procurement
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号