首页 | 本学科首页   官方微博 | 高级检索  
     

面向对象分析的非结构化背景目标高光谱探测方法研究
引用本文:刘凯,张立福,杨杭,朱海涛,姜海玲,李瑶. 面向对象分析的非结构化背景目标高光谱探测方法研究[J]. 光谱学与光谱分析, 2013, 33(6): 1653-1657. DOI: 10.3964/j.issn.1000-0593(2013)06-1653-05
作者姓名:刘凯  张立福  杨杭  朱海涛  姜海玲  李瑶
作者单位:1. 中国科学院遥感应用研究所遥感国家重点实验室,北京 100101
2. 北京大学遥感与GIS研究所,北京 100871
基金项目:国家自然科学基金项目,环境保护部重大公益项目
摘    要:
针对非结构化背景探测器中背景协方差矩阵估计的局限性,提出了一种基于面向对象分析的高光谱小目标探测算法。首先对图像进行自适应迭代分割处理,将其划分为许多均质对象;然后进行正态最优分布选取,利用多元正态无偏检验选取最佳对象集;最后将此数据集合作为局部背景并结合GLR基准算法进行目标探测。该算法可以使局部背景最大化的服从正态分布,有效地将背景光谱信息和目标光谱信息分离开来,同时通过最优选取过程克服了目标信息“污染”问题。为了验证算法的有效性,利用真实的OMIS数据进行仿真实验,并与非结构化背景探测器GLR和基于K-Means聚类的改进GLR算法的检测结果比较,结果表明提出的算法具有良好的探测性能和较低的虚警概率。

关 键 词:高光谱  目标探测  非结构化  面向对象分析   
收稿时间:2012-10-19

Hyperspectral Unstructured Background Target Detection Approach Based on Object-Oriented Analysis
LIU Kai , ZHANG Li-fu , YANG Hang , ZHU Hai-tao , JIANG Hai-ling , LI Yao. Hyperspectral Unstructured Background Target Detection Approach Based on Object-Oriented Analysis[J]. Spectroscopy and Spectral Analysis, 2013, 33(6): 1653-1657. DOI: 10.3964/j.issn.1000-0593(2013)06-1653-05
Authors:LIU Kai    ZHANG Li-fu    YANG Hang    ZHU Hai-tao    JIANG Hai-ling    LI Yao
Affiliation:1. Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101, China2. Institute of Remote Sensing and GIS, Peking University, Beijing 100871, China
Abstract:
In order to reduce the limitation in background statistics estimation of unstructured background detector, a small target detection algorithm based on object-oriented analysis was proposed. After segmenting the whole imagery into many fairly homogenous regions using adaptive iterative method, multivariate normality test was applied to choose several optimal object sets which obey the law of normal distribution well. Then, the selected objects would be combined with GLR to perform target detection. This method could make the local background well fit a normal distribution and effectively separate the target signal from background, and meanwhile avoid the contamination effect through the selection of optimal objects. A simulation experiment was conducted on real OMIS data to validate the effectiveness of the proposed algorithm. The detection results were compared with those detected by the unstructured background detector GLR and improved GLR which incorporated K-Means clustering. The results show that the proposed algorithm has better detection performance and lower false alarm probability than other detection algorithms.
Keywords:Hyperspectral  Target detection  Unstructured background model  Object-oriented analysis
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号