首页 | 本学科首页   官方微博 | 高级检索  
     


Thermal and inertial modes of convection in a rapidly rotating annulus
Authors:Pino   Mercader   Net
Affiliation:Departament de Fisica Aplicada, Modul B4, Campus Nord, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain.
Abstract:
The nature of the primary instabilities that arise in a fluid contained in a fast rotating cylindrical annulus with slightly inclined plane top and bottom boundaries, radial gravity, and internal heating is numerically analyzed. It is shown that for moderate and high Prandtl numbers, the onset of convection is described by a competition of azimuthal thermal modes with different radial structure, which dominate in different regions of the parameter space. By the combined effect of the inclined ends and rotation, there are modes that are attached to the heated wall and slanted to the prograde direction of rotation, and others which are straight and fill the convective layer. Nevertheless, for very small Prandtl numbers the velocity field of the dominant modes corresponds essentially to the inertial solution of the Poincare equation, and the temperature perturbation is forced by this velocity field. In addition, a detailed exploration of the critical Rayleigh numbers and precession frequencies of the convective modes versus the radius ratio and the Coriolis parameter, for different Prandtl numbers, is presented.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号