首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excitation mechanisms and dispersion characteristics of guided waves in multilayered cylindrical solid media
Authors:Cui Hanyin  Zhang Bixing  Johnstone Sherri  Trevelyan Jon
Institution:State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
Abstract:This paper first reviews a method of simulating the propagation characteristics of guided waves in multilayered coaxial cylindrical elastic solid media. Secondly, this method is used to investigate the properties of the guided waves for the ultrasonic long-range non-destructive evaluation techniques for rockbolts. To do so, the special case of non-leaky guided modes in open waveguides is considered. The method explains how the complex dispersion function is converted into a real function: hence the bisection technique can be employed to search for all the real roots. The model is used to (i) characterize the low dispersion range and anomalous dispersion of normal and Stoneley modes and (ii) analyze the excitation mechanisms of guided waves from axisymmetric and non-axisymmetric acoustic sources. The results are used to select suitable excitation frequency ranges associated with dominant modes with large amplitudes, low dispersion, and distinguishable propagation velocities to reduce signal distortion. The results suggest the lowest order flexural mode, excited by a radial force source, has potential to be used in practice. Also, the highly dispersive Stoneley mode propagating along a cylindrical interface is defined and distinguished from the normal mode using two properties, velocity high-frequency asymptotes and amplitude distributions along the radial direction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号