首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Novel water-soluble bacteriochlorophyll derivatives for vascular-targeted photodynamic therapy: synthesis, solubility, phototoxicity and the effect of serum proteins
Authors:Brandis Alexander  Mazor Ohad  Neumark Eran  Rosenbach-Belkin Varda  Salomon Yoram  Scherz Avigdor
Institution:Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel.
Abstract:New negatively charged water-soluble bacteriochlorophyll (Bchl) derivatives were developed in our laboratory for vascular-targeted photodynamic therapy (VTP). Here we focused on the synthesis, characterization and interaction of the new candidates with serum proteins and particularly on the effect of serum albumin on the photocytotoxicity of WST11, a representative compound of the new derivatives. Using several approaches, we found that aminolysis of the isocyclic ring with negatively charged residues markedly increases the hydrophilicity of the Bchl sensitizers, decreases their self-association constant and selectively increases their affinity to serum albumin, compared with other serum proteins. The photocytotoxicity of the new candidates in endothelial cell culture largely depends on the concentration of the serum albumin. Importantly, after incubation with physiological concentrations of serum albumin (500-600 microM), WST11 was found to be poorly photocytotoxic (>80% endothelial cell survival in cell cultures). However, in a recent publication (Mazor, O. et al. 2005] Photochem. Photobiol. 81, 342-351) we showed that VTP of M2R melanoma xenografts with a similar WST11 concentration resulted in approximately 100% tumor flattening and >70% cure rate. We therefore propose that the two studies collectively suggest that the antitumor activity of WST11 and probably of other similar candidates does not depend on direct photointoxication of individual endothelial cells but on the vascular tissue response to the VTP insult.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号