首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geometric methods for construction of quantum gates
Authors:Z Giunashvili
Institution:(1) Department of Theoretical Physics, Institute of Mathematics, Georgian Academy of Sciences, Tbilisi, Georgia
Abstract:The applications of geometric control theory methods on Lie groups and homogeneous spaces to the theory of quantum computations are investigated. These methods are shown to be very useful for the problem of constructing a universal set of gates for quantum computations: the well-known result that the set of all one-bit gates together with almost any one two-bit gate is universal is considered from the control theory viewpoint. Differential geometric structures such as the principal bundle for the canonical vector bundle on a complex Grassmann manifold, the canonical connection form on this bundle, the canonical symplectic form on a complex Grassmann manifold, and the corresponding dynamical systems are investigated. The Grassmann manifold is considered as an orbit of the co-adjoint action, and the symplectic form is described as the restriction of the canonical Poisson structure on a Lie coalgebra. The holonomy of the connection on the principal bundle over the Grassmannian and its relation with the Berry phase is considered and investigated for the trajectories of Hamiltonian dynamical systems. __________ Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 44, Quantum Computing, 2007.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号