Abstract: | We study the eigenstates in quantum dots in which electrons are confined by the application of an inhomogeneous perpendicular magnetic field, focusing on the effect that the specific details of the shape of confining field has on determining these states. In contrast to the edge state picture established in studies on circular dots, we find that dots with more irregular geometries show a more complicated behavior in the interior of the dot. In particular, we find that certain states show indications of having their amplitude enhanced along particular classical periodic orbits in the interior, a phenomenon known as ‘scarring’. |