首页 | 本学科首页   官方微博 | 高级检索  
     


Approximate maximum likelihood estimation in linear regression
Authors:Michael A. Magdalinos
Affiliation:(1) Department of Statistics and Information Science, The Athens University of Economics and Business, 76, Patission Street, 104 34 Athens, Greece
Abstract:The application of the ML method in linear regression requires a parametric form for the error density. When this is not available, the density may be parameterized by its cumulants (kappai) and the ML then applied. Results are obtained when the standardized cumulants (gammai) satisfy gammai=kappai+2/kappa2(i+2)/2=O(vi) asv rarr 0 fori>0.Research financed in part by the Research Center of the Athens University of Economics and Business.
Keywords:Regression  maximum likelihood  non-normal errors  Edgeworth approximation
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号