首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimal separation times for electrical field flow fractionation with Couette flows
Authors:Pascal Jennifer  O'Hara Ryan  Oyanader Mario  Arce Pedro E
Institution:Department of Chemical Engineering, Tennessee Technological University, Cookeville, TN 38505, USA.
Abstract:The prediction of optimal times of separation as a function of the applied electrical field and cation valence have been studied for the case of field flow fractionation Martin M., Giddings J. C., J. Phys. Chem. 1981, 85, 727] with charged solutes. These predictions can be very useful to a priori design or identify optimal operating conditions for a Couette-based device for field flow fractionation when the orthogonal field is an electrical field. Mathematically friendly relationships are obtained by applying the method of spatial averaging to the solute species continuity equation; this is accomplished after the role of the capillary geometrical dimensions on the applied electrical field equations has been assessed Oyanader M. A., Arce P., Electrophoresis 2005; 26, 2857]. Moreover, explicit analytical expressions are derived for the effective parameters, i.e. diffusivity and convective velocity as functions of the applied (orthogonal) electrical field. These effective transport parameters are used to study the effect of the cation valence of the solutes and of the magnitude of the applied orthogonal electrical field on the values of the optimal time of separation. These parameters play a significant role in controlling the optimal separation time, leading to a family of minimum values, for particular magnitudes of the applied orthogonal electrical field.
Keywords:Area averaging  Electro‐based separations  Field flow fractionation  Orthogonal fields
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号