首页 | 本学科首页   官方微博 | 高级检索  
     


Low-pressure pyrolysis of tBu2SO: synthesis and IR spectroscopic detection of HSOH
Authors:Beckers Helmut  Esser Simone  Metzroth Thorsten  Behnke Markus  Willner Helge  Gauss Jürgen  Hahn Josef
Affiliation:FB C, Anorganische Chemie, Bergische Universit?t Wuppertal, Germany. beckers@uni-wuppertal.de
Abstract:
Sulfenic acid (HSOH, 1 ) has been synthesized in the gas‐phase by low‐pressure high‐temperature (1150 °C) pyrolysis of di‐tert‐butyl sulfoxide (tBu2SO, 2 ) and characterized by means of matrix isolation and gas‐phase IR spectroscopy. High‐level coupled‐cluster (CC) calculations (CCSD(T)/cc‐pVTZ and CCSD(T)/cc‐pVQZ) support the first identification of the gas‐phase IR spectrum of 1 and enable its spectral characterization. Five of the six vibrational fundamentals of matrix‐isolated 1 have been assigned, and its rotational‐resolved gas‐phase IR spectrum provides additional information on the O–H and S–H stretching fundamentals. Investigations of the pyrolysis reaction by mass spectrometry, matrix isolation, and gas‐phase FT‐IR spectroscopy reveal that, up to 500 °C, 2 decomposes selectively into tert‐butylsulfenic acid, (tBuSOH, 3 ), and 2‐methylpropene. The formation of the isomeric sulfoxide (tBu(H)SO, 3 a ) has been excluded. Transient 3 has been characterized by a comprehensive matrix and gas‐phase vibrational IR study guided by the predicted vibrational spectrum calculated at the density functional theory (DFT) level (B3LYP/6‐311+G(2d,p)). At higher temperatures, the intramolecular decomposition of 3 , monitored by matrix IR spectroscopy, yields short‐lived 1 along with 2‐methylpropene, but also H2O, and most probably sulfur atoms. In addition, HSSOH ( 6 ), H2, and S2O are found among the final pyrolysis products observed at 1150 °C in the gas phase owing to competing intra‐ and intermolecular decomposition routes of 3 . The decomposition routes of the starting compound 2 and of the primary intermediate 3 are discussed on the basis of experimental results and a computational study performed at the B3LYP/6‐311G* and second‐order Møller–Plesset (MP2/6‐311G* and RI‐MP2/QZVPP) levels of theory.
Keywords:flash pyrolysis  gas‐phase reactions  IR spectroscopy  matrix isolation  quantum chemical calculations
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号