首页 | 本学科首页   官方微博 | 高级检索  
     

土壤的光谱特征及氮含量的预测研究
引用本文:鲍一丹,何勇,方慧. 土壤的光谱特征及氮含量的预测研究[J]. 光谱学与光谱分析, 2007, 27(1): 62-65
作者姓名:鲍一丹  何勇  方慧
作者单位:1. 浙江大学生物工程与食品科学学院,浙江,杭州,310029
2. 浙江大学生物工程与食品科学学院,浙江 杭州 310029;哈瓦那农业大学机械系,古巴
基金项目:国家自然科学基金 , 浙江省自然科学基金 , 浙江省科技攻关项目
摘    要:应用近红外光谱分析技术(NIR)测定土壤参数具有快速、方便的特点.文章分析了不同含水率、不同颗粒大小的土壤样本在不同测试角、不同测试高度对土壤光谱的影响,并得到了不同含水率和不同粒径土壤的含氮量预测模型.研究了这些因素对含氮率测量的影响,分析了NIR技术在田间实地应用预测的可能性.研究表明,光谱仪在距土壤高度为100 mm,测试角为45°时,具有最大的吸光度.土壤粒径和含水率这2个参数明显影响,当粒径在0.5~5 mm变化时,含氮量预测相关系数r为0.81左右,当土壤粒径在<0.25和>5 mm模型的预测能力变差.当土壤样品呈天然潮湿状态时,氮的预测结果较差.而样品干燥以后,预测相关系数较高.为土壤原位光谱测试提供了依据.

关 键 词:近红外光谱  土壤  含氮量  含水率
文章编号:1000-0593(2007)01-0062-04
收稿时间:2005-11-26
修稿时间:2006-03-06

Spectral Characterization and N Content Prediction of Soil with Different Particle Size and Moisture Content
BAO Yi-dan,HE Yong,FANG Hui,Annia Garcia Pereira. Spectral Characterization and N Content Prediction of Soil with Different Particle Size and Moisture Content[J]. Spectroscopy and Spectral Analysis, 2007, 27(1): 62-65
Authors:BAO Yi-dan  HE Yong  FANG Hui  Annia Garcia Pereira
Affiliation:1. College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, China; 2. Mechanization Faculty, Havana Agricultural University, Cuba
Abstract:The present work was focused on analyzing the influence of moisture content, particle size, light source incidence angle and observation height on a loamy mixed soil spectra Meanwhile, prediction models for N content with different moisture and particle sizes were obtained, and the influence of these properties on N prediction was studied. The future applicability of NIR spectroscopy as a technique able to make prediction on the spot was analyzed. Observation height 100 mm and light source angle 45 degrees were chosen to present a sharpest spectra. Moisture content and particle size were found to affect strongly the absorbance of the spectra, and an accurate N prediction was obtained when the particle sizes varied from 0. 5-1. 0, 1. 0-2.0 and 2-5 mm with r of 0. 82, 0. 81 and 0. 81, respectively. Poor N prediction was obtained when the soil kept its natural moisture with r of 0. 57 and SECV of 3. 06 compared with the performance when it was dry with r of 0. 81 and SECV of 2. 40.
Keywords:Spectroscopyt Soil   N content   Moisture content
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号