Growth parameters for large diameter float zone silicon crystals |
| |
Authors: | Ray L. Collins |
| |
Affiliation: | Hughes Aircraft Company, 6155 E8 Camino Real, Carlsbad, California, USA |
| |
Abstract: | ![]() Factors that directly affect the ability to grow dislocation free float zone silicon crystals up to 80 mm in diameter have been experimentally determined. The highest yield is obtained for 80 mm diameter crystals by starting with 68 mm to 74 mm diameter poly crystal rod stock. Lower transport speeds for crystal growth of (111) orientation crystals were 3 to 4 mm/min and for (100), 2 to 3 mm/min. Rotation rates of both upper and lower shafts were found to have an effect on growth at the solid-liquid interface. Rates established for lower shaft were 6 to 8 rpm for the (111) crystals and 3 to 4 rpm for (100), counter-clock-wise. Upper rotation rates were 2 rpm on (111) crystals and 3 to 5 rpm on (100), clockwise. Seed orientation, which is critical, was held to within plus or minus of perfect orientation. The minimum seed growth length was 50 to 70 mm. To assist in reducing the side lobes on (111) dislocation free crystals, a cooling ring with a flow or argon was used. For best (100) growth the shape of the lower side of a one turn copper rf work coil was made conical. Six to ten dislocation free crystals in each orientation group were produced using these parameters. |
| |
Keywords: | |
本文献已被 ScienceDirect 等数据库收录! |
|