首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Arsenic trioxide targets Hsp60, triggering degradation of p53 and survivin
Authors:Xuqiao Hu  Hongyan Li  Tiffany Ka-Yan Ip  Yam Fung Cheung  Mohamad Koohi-Moghadam  Haibo Wang  Xinming Yang  Daniel N Tritton  Yuchuan Wang  Yi Wang  Runming Wang  Kwan-Ming Ng  Hua Naranmandura  Eric Wai-Choi Tse  Hongzhe Sun
Abstract:The mechanisms of action of arsenic trioxide (ATO), a clinically used drug for the treatment of acute promyelocytic leukemia (APL), have been actively studied mainly through characterization of individual putative protein targets. There appear to be no studies at a system level. Herein, we integrate metalloproteomics through a newly developed organoarsenic probe, As-AC (C20H17AsN4O3S2) with quantitative proteomics, allowing 37 arsenic binding and 250 arsenic regulated proteins to be identified in NB4, a human APL cell line. Bioinformatics analysis reveals that ATO disrupts multiple physiological processes, in particular, chaperone-related protein folding and cellular response to stress. Furthermore, we discover heat shock protein 60 (Hsp60) as a vital target of ATO. Through biophysical and cell-based assays, we demonstrate that ATO binds to Hsp60, leading to abolishment of Hsp60 refolding capability. Significantly, the binding of ATO to Hsp60 disrupts the formation of Hsp60-p53 and Hsp60-survivin complexes, resulting in degradation of p53 and survivin. This study provides significant insights into the mechanism of action of ATO at a systemic perspective, and serves as guidance for the rational design of metal-based anticancer drugs.

A highly selective organoarsenic fluorescent probe As-AC and quantitative proteomics were employed to track arsenic-binding and regulating proteins in live leukemia cells. Hsp60 was validated as a new target of ATO.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号