首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Difference Between the Standard and The Lorentz Transformations of the Electric and the Magnetic Fields
Authors:Email author" target="_blank">Tomislav?Ivezi?Email author
Institution:(1) Ruđer Bo¡kovik Institute, P.O.B. 180, 10002 Zagreb, Croatia
Abstract:In this paper it is shown by using the Clifford algebra formalism that the usual Lorentz transformations of the three-dimensional (3D) vectors of the electric and magnetic fields E and B (which will be named as standard transformations (ST)) are different than the Lorentz transformations (LT) of well-defined quantities from the 4D spacetime. This difference between the ST and the LT is obtained regardless of the used algebraic objects (1-vectors or bivectors) for the representation of the electric and magnetic fields in the usual observer dependent decompositions of F. The LT correctly transform the whole 4D quantity, e.g., Ef : F · γ0, whereas the ST are the result of the application of the LT only to the part of Ef, i.e., to F, but leaving γ0 unchanged. The new decompositions of F in terms of 4D quantities that are defined without reference frames, i.e., the absolute quantities, are introduced and discussed. It is shown that the LT of the 4D quantities representing electric and magnetic fields correctly describe the motional electromotive force (emf) for all relatively moving inertial observers, whereas it is not the case with the ST of the 3D E and B.
Keywords:standard and Lorentz transformations of the electric and magnetic fields  motional emf
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号