首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A ballistic compressor-based experiment for the visualization of liquid propellant jet combustion above 100 MPa
Authors:A Birk  D E Kooker
Institution:(1) US Army Research Laboratory Weapons and Materials Research Directorate Aberdeen Proving Ground, MD 21005-5066, USA, US
Abstract: This paper describes the components and operation of an experimental setup for the visualization of liquid propellant (LP) jet combustion at pressures above 100 MPa. The apparatus consists of an in-line ballistic compressor and LP injector. The ballistic compressor, based on a modified 76 mm gun, provides high-pressure (ca. 55 MPa) clear hot gas for the jet ignition. A piston (projectile) is fired toward a test chamber beyond the barrel’s end, and its rebound is arrested in a transition section that seals the test chamber to the barrel. The LP jet is injected once the piston is restrained, and combustion of the jet further elevates the pressure. At a preset pressure, a disc in the piston ruptures and the combustion gas vents sonically into the barrel. If a monopropellant is used, the jet injection-combustion process then resembles liquid rocket combustion but at very high pressures (ca. 140 MPa). This paper discusses the ballistics of the compression and compares experimental results to those predicted by a numerical model of the apparatus. Experimentally, a pressure of 70 MPa was achieved upon a 12.5 volumetric compression factor by firing a 10 kg piston into 1.04 MPa argon using a charge of 75 g of small-grain M1 propellant. Received: 16 December 1996/Accepted: 15 July 1997
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号