首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Suppressing the P2–O2 Phase Transition of Na0.67Mn0.67Ni0.33O2 by Magnesium Substitution for Improved Sodium‐Ion Batteries
Authors:Peng‐Fei Wang  Ya You  Dr Ya‐Xia Yin  Yue‐Sheng Wang  Prof Li‐Jun Wan  Prof Lin Gu  Prof Yu‐Guo Guo
Institution:1. CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing, P.R. China;2. University of Chinese Academy of Sciences, Beijing, P.R. China;3. Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, P.R. China
Abstract:Room‐temperature sodium‐ion batteries (SIBs) have shown great promise in grid‐scale energy storage, portable electronics, and electric vehicles because of the abundance of low‐cost sodium. Sodium‐based layered oxides with a P2‐type layered framework have been considered as one of the most promising cathode materials for SIBs. However, they suffer from the undesired P2–O2 phase transition, which leads to rapid capacity decay and limited reversible capacities. Herein, we show that this problem can be significantly mitigated by substituting some of the nickel ions with magnesium to obtain Na0.67Mn0.67Ni0.33?xMgxO2 (0≤x≤0.33). Both the reversible capacity and the capacity retention of the P2‐type cathode material were remarkably improved as the P2–O2 phase transition was thus suppressed during cycling. This strategy might also be applicable to the modulation of the physical and chemical properties of layered oxides and provides new insight into the rational design of high‐capacity and highly stable cathode materials for SIBs.
Keywords:cyclability  electrochemistry  magnesium  phase transitions  sodium-ion batteries
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号