首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Synergistically Enhancing Thermoelectric Performance of n-Type PbTe with Indium Doping and Sulfur Alloying
Authors:Dongyang Wang  Yongxin Qin  Sining Wang  Yuting Qiu  Dudi Ren  Yu Xiao  Li-Dong Zhao
Institution:1. School of Materials Science and Engineering, Beihang University, Beijing, 100191 China;2. Beihang School, Beihang University, Beijing, 100191 China;3. Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 201800 China
Abstract:To achieve high-performance n-type PbTe-based thermoelectric materials, this work provides a synergetic strategy to improve electrical transport property with indium (In) element doping and reduces thermal conductivity with sulfur (S) element alloying. In n-type PbTe, In doping can tune the carrier density in the whole working temperature range, causing the carrier density to increase from 2.18 × 1019 cm−3 at 300 K to 4.84 × 1019 cm−3 at 823 K in Pb0.98In0.005Sb0.015Te. The optimized carrier density can further modulate electrical conductivity and Seebeck coefficient, finally contributing to a substantial increase of power factor, and a maximum power factor increase from 19.7 µW cm−1 K−2 in Pb0.985Sb0.015Te to 28.2 µW cm−1 K−2 in Pb0.9775In0.0075Sb0.015Te. Based on the optimally In-doped PbTe, S alloying is introduced to suppress phonon propagation by forming a complete solid solution, which could effectively reduce lattice thermal conductivity and simultaneously benefit carrier mobility to maintain high power factor. With S alloying, the minimum lattice thermal conductivity decreases from 0.76 Wm−1 K−1 in Pb0.985Sb0.015Te to 0.42 Wm−1 K−1 in Pb0.98In0.005Sb0.015Te0.88S0.12. Combining the advantages of both In doping and S alloying, the peak ZT value and averaged ZT (ZTave) (300–873 K) are boosted from 1.0 and 0.60 in Pb0.985Sb0.015Te to 1.4 and 0.87 in Pb0.98In0.005Sb0.015Te0.94S0.06.
Keywords:n-type PbTe  power factor  thermal conductivity  thermoelectric performance  ZT
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号