Synthesis and characterization of novel ferrocenyl glycidyl ether polymer,ferrocenyl poly (epichlorohydrin) and ferrocenyl poly (glycidyl azide) |
| |
Authors: | Hassan Abbasi Reza Teimuri-Mofrad |
| |
Affiliation: | Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran |
| |
Abstract: | Poly (ferrocenyl glycidyl ether) was synthesized by polymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane (FcEpo) using toluene solution of methylaluminoxane as the catalyst. Copolymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane with epichlorohydrin was used for the synthesis of another ferrocenyl based poly (epichlorohydrin). Ferrocenyl based poly (glycidyl azide), GAP, was synthesized by treatment of sodium azide with this copolymer in DMF as solvent at room temperature. The synthesized ferrocenyl based polymers were characterized by FT-IR, 1HNMR, UV–Vis, TGA, DSC and GPC analysis. The UV–Vis spectra of synthesized polymers show the absorption band of ferrocene moiety at about 450 nm. The TGA and DSC analysis show that poly (ferrocenyl glycidyl ether) has good thermal stability. The TGA analysis shows that the copolymerization of 2-[(4-ferrocenylbutoxy)methyl]oxirane with epichlorohydrin improved the thermal stability of the copolymer. The GPC analysis of poly (ferrocenyl glycidyl ether), ferrocenyl based poly (epichlorohydrin) and Ferrocenyl based poly (glycidyl azide) show the PDI between 1.14–1.17. The electrochemical behavior of synthesized polymers was investigated by cyclic voltammetry (CV) measurements. The CV curves of synthesized polymers show good electrochemical performance and there is one redox system with the single-electron reversible reaction that associated with ferrocene moiety in polymers structure. The anodic and cathodic peak currents increased with scan rate confirmed redox reactions in the system are kinetically fast diffusion-controlled reactions. |
| |
Keywords: | epichlorohydrin ferrocene ferrocenyl glycidyl ether GAP polymer |
|
|