首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Rapid proton-coupled electron-transfer of hydroquinone through phenylenevinylene bridges
Authors:Trammell Scott A  Seferos Dwight S  Moore Martin  Lowy Daniel A  Bazan Guillermo C  Kushmerick James G  Lebedev Nikolai
Institution:Center for Bio-Molecular Science and Engineering, Naval Research Laboratory, Washington, DC 20375, USA. scott.trammell@nrl.navy.mil
Abstract:We describe the synthesis of two oligo(phenylene vinylene)s (OPVs) with a hydroquinone moiety and a thiol anchor group: 4-(2',5'-dihydroxystyryl)benzyl thioacetate and 4-4'-(2' ',5' '-dihydroxystyryl)styryl]benzyl thioacetate. Monolayers on gold of these molecules were examined by electrochemical techniques to determine the electron transfer kinetics of the hydroquinone functionality (H2Q) through these delocalized tethers ("molecular wires") as a function of pH. Between pH 4 and 9, rate constants were ca. 100-fold faster than for the same H2Q functionality confined to the surface via alkane tethers. Also, in this same pH range rate constants were independent of the length of the OPV bridge. These new electroactive molecules in which the hydroquinone functionality is wired to the gold surface by means of OPV tethers should be useful platforms for constructing bioelectronic devices such as biosensors, biofuel cells, and biophotovoltaic cells with a fast response time.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号