首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation among grain boundary character,carbide precipitation and deformation in Alloy 690
Authors:Hui Li  Kai Zhang  Hefeng Zheng  Mengjie Shi
Institution:Key Laboratory for Microstructures, School of Materials Science and Engineering, Shanghai University, Shanghai, People’s Republic of China
Abstract:The correlation among grain boundary character, carbide precipitation and deformation in the grain boundary engineering (GBE) treated Alloy 690 samples with and without pre-deformation aged at 715oC for 15?h was analysed by scanning electron microscopy and electron backscatter diffraction. The fraction of low Σ coincidence site lattice (CSL) grain boundary was enhanced by GBE treatment. The fraction of Σ3 grain boundary decreased, and most of Σ9 and Σ27 grain boundaries disappeared in the deformed GBE samples. After aging treatment, bigger carbide precipitated at coherent Σ3 grain boundary, however, most of plate-like carbide precipitated at incoherent Σ3 grain boundary disappeared in the pre-deformed GBE samples. The larger carbide precipitated on the random grain boundary in the 5% pre-deformed sample, while smaller carbide can be observed in the 15% pre-deformed sample. During the in situ tensile test of the aged GBE samples, grain boundary carbide migrated with the grain boundary migration. The slip bands go across Σ3 grain boundary directly, but cannot go across other grain boundaries. The high density of carbide plate precipitated near incoherent Σ3 and Σ9 grain boundaries can resist the evolution of slip bands. Compared to the Σ3 and Σ9 grain boundaries, Σ27 and random grain boundaries are more easily to form microcrack during deformation. The initiation of grain boundary microcrack not only related to the character of grain boundary but also related to the character of nearby grain boundaries. The phase interface of carbide and matrix is another region to initiate the microcrack.
Keywords:Carbide precipitation  grain boundary character  triple junction  grain boundary engineering  deformation  Alloy 690
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号