首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monte Carlo simulation of adsorption of binary and quaternary alkane isomers mixtures in zeolites: Effect of pore size and structure
Authors:Linghong Lu  Xiaohua Lu  Yuping Chen  Liangliang Huang  Qing Shao  Qi Wang
Institution:1. College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China;2. Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
Abstract:Grand canonical Monte Carlo and configurational bias Monte Carlo techniques were employed to simulate the adsorption of binary mixtures of butane isomers and quaternary mixtures in nine zeolites at 300 K. For binary mixtures the results show there is a critical pore size, which is 10-membered-ring about 5.6 Å. The channel sizes of BEA, ISV, MOR and CFI are larger than this critical pore size, they prefer i-butane than n-butane, whereas TON with smaller channel size than critical pore size prefers n-butane than i-butane, but its selectivity decreases with pressure increasing. MFI, MEL and TER prefer i-butane than n-butane at low pressure, but with pressure increasing, the selectivity is reversed. BOG prefers i-butane than n-butane but the selectivity decreased with pressure increasing. It demonstrates that the adsorption and selectivity are controlled by both pore size and pore structure. The n-butane–i-butane–n-pentane–2-methylbutane quaternary mixtures adsorbed in these nine zeolites were studied, and the results show alkane chain length dependence at low pressure, but the adsorption is controlled by pore size and structure with pressure increasing in all the zeolites except for TON and BOG.
Keywords:Simulation  Adsorption  Alkane  Zeolite  Pore size
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号