Radiation effects on mixed convection about a cone embedded in a porous medium filled with a nanofluid |
| |
Authors: | Ali J. Chamkha S. Abbasbandy A. M. Rashad K. Vajravelu |
| |
Affiliation: | 1. Manufacturing Engineering Department, The Public Authority for Applied Education and Training, Shuweikh, 70654, Kuwait 2. Department of Mathematics, Imam Khomeini International University, Ghazvin, Iran 3. Department of Mathematics, Faculty of Science, South Valley University, Aswan, Egypt 4. Department of Mathematics, University of Central Florida, Orlando, FL, 32816, USA
|
| |
Abstract: | The problem of steady, laminar, mixed convection boundary-layer flow over a vertical cone embedded in a porous medium saturated with a nanofluid is studied, in the presence of thermal radiation. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis with Rosseland diffusion approximation. The cone surface is maintained at a constant temperature and a constant nanoparticle volume fraction. The resulting governing equations are non-dimensionalized and transformed into a non-similar form and then solved by Keller box method. A comparison is made with the available results in the literature, and our results are in very good agreement with the known results. A parametric study of the physical parameters is made and a representative set of numerical results for the local Nusselt and Sherwood numbers are presented graphically. Also, the salient features of the results are analyzed and discussed. |
| |
Keywords: | |
本文献已被 SpringerLink 等数据库收录! |
|