首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Excitons in artificial quantum dots in the weak spatial confinement regime
Authors:S V Zaitsev  M K Welsch  A Forchel  G Bacher
Institution:1.Institute of Solid State Physics,Russian Academy of Sciences,Chernogolovka, Moscow oblast,Russia;2.Technische Physik,Universit?t Würzburg,Würzburg,Germany;3.Lehrstuhl für Werkstoffe der Elektrotechnik,Universit?t Duisburg-Essen,Duisburg,Germany
Abstract:The exciton states in individual quantum dots prepared by the selective interdiffusion method in CdTe/CdMgTe quantum wells are studied by the methods of steady-state optical spectroscopy. The annealing-induced diffusion of Mg atoms inward to the bulk of the quantum well, which is significantly enhanced under the SiO2 mask, leads to a modulation of the bandgap width in the plane of the well, with the minima of the potential being located in the mask aperture areas. A lateral potential that arises, whose height is in the range 30–270 meV and characteristic scale is about 100 nm, efficiently localizes carriers, which form quasi-zero-dimensional excitons in the weak spatial confinement regime. Detailed magnetooptical studies show that Coulomb correlations play a significant role in the formation of exciton states under such a regime, which, in particular, manifests itself in the localization of the wavefunction of carriers on scales that are considerably smaller than the scale of the lateral potential. The particular features of the interlevel splitting, of the biexciton binding energy, and of the diamagnetic shift are discussed. A strong dependence of the interlevel relaxation on the interlevel splitting (the phonon neck) indicates that alternative relaxation mechanisms in the quantum dots studied are weak. The excited states are populated according to the Pauli principle, which indicates that it is possible to apply the shell model of many-exciton states to quantum dots under the weak spatial confinement conditions.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号