首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On variational features of vortex flows
Authors:V L Berdichevsky
Institution:(1) Department of Mechanical Engineering, Wayne State University, Detroit, MI 48202, USA
Abstract:Ideal incompressible fluid is a Hamiltonian system which possesses an infinite number of integrals, the circulations of velocity over closed fluid contours. This allows one to split all the degrees of freedom into the driving ones and the “slave” ones, the latter to be determined by the integrals of motions. The “slave” degrees of freedom correspond to “potential part” of motion, which is driven by vorticity. Elimination of the “slave” degrees of freedom from equations of ideal incompressible fluid yields a closed system of equations for dynamics of vortex lines. This system is also Hamiltonian. The variational principle for this system was found recently (Berdichevsky in Thermodynamics of chaos and order, Addison-Wesly-Longman, Reading, 1997; Kuznetsov and Ruban in JETP Lett 67, 1076–1081, 1998). It looks striking, however. In particular, the fluid motion is set to be compressible, while in the least action principle of fluid mechanics the incompressibility of motion is a built-in property. This striking feature is explained in the paper, and a link between the variational principle of vortex line dynamics and the least action principle is established. Other points made in this paper are concerned with steady motions. Two new variational principles are proposed for steady vortex flows. Their relation to Arnold’s variational principle of steady vortex motion is discussed.
Keywords:Vortex line  Variational principle  Steady vortex flow
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号