Magnetic properties of cobalt substituted M-type barium hexaferrite prepared by co-precipitation |
| |
Authors: | Kajal K. Mallick Philip ShepherdRoger J. Green |
| |
Affiliation: | School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom |
| |
Abstract: | The co-precipitation and solid state methods were used in the synthesis of barium hexaferrite (BaM). Phase pure BaM was obtained with 1, 2, 3, 5, 10, 15, 20 and 30 wt% cobalt oxide (Co3O4). The addition of Co2+/3+ ions to the BaM increased the permeability and magnetic loss tangent to a value of 3.5 at 5% and reduced to 1 at 30% doping. With increased Co doping, Ms was reduced from 87-58 emu/g, Mr increased from 11 to 40 emu/g with 3–5 wt% Co and 9 emu/g for 30% doping. Hc sharply increased from 540 to 2200 Oe with a reduction to 280 Oe at 10 K with increasing temperature to 300 K. Tc increased from 740 to 750 K for 30% Co doping. DTA–TGA studies of green body showed decarboxilation to occur at around 825 °C and the transformation of residual Co3O4 to Co2O3 at around 577 °C. The XRD data confirmed the Co ions substituting into Fe sites until a 10–15% doping level where the structure altered to W-type hexaferrite. The densities of the compounds varied with doping to a maximum of 4.45 g/cm3. |
| |
Keywords: | Electron microscopy Magnetic property Electrical property Ferrite |
本文献已被 ScienceDirect 等数据库收录! |
|