Exploration of the Crystal Structure and Thermal and Spectroscopic Properties of Monoclinic Praseodymium Sulfate Pr2(SO4)3 |
| |
Authors: | Yuriy G. Denisenko,Victor V. Atuchin,Maxim S. Molokeev,Alexander E. Sedykh,Nikolay A. Khritokhin,Aleksandr S. Aleksandrovsky,Aleksandr S. Oreshonkov,Nikolai P. Shestakov,Sergey V. Adichtchev,Alexey M. Pugachev,Elena I. Sal’ nikova,Oleg V. Andreev,Illaria A. Razumkova,Klaus Mü ller-Buschbaum |
| |
Abstract: | Praseodymium sulfate was obtained by the precipitation method and the crystal structure was determined by Rietveld analysis. Pr2(SO4)3 is crystallized in the monoclinic structure, space group C2/c, with cell parameters a = 21.6052 (4), b = 6.7237 (1) and c = 6.9777 (1) Å, β = 107.9148 (7)°, Z = 4, V = 964.48 (3) Å3 (T = 150 °C). The thermal expansion of Pr2(SO4)3 is strongly anisotropic. As was obtained by XRD measurements, all cell parameters are increased on heating. However, due to a strong increase of the monoclinic angle β, there is a direction of negative thermal expansion. In the argon atmosphere, Pr2(SO4)3 is stable in the temperature range of T = 30–870 °C. The kinetics of the thermal decomposition process of praseodymium sulfate octahydrate Pr2(SO4)3·8H2O was studied as well. The vibrational properties of Pr2(SO4)3 were examined by Raman and Fourier-transform infrared absorption spectroscopy methods. The band gap structure of Pr2(SO4)3 was evaluated by ab initio calculations, and it was found that the valence band top is dominated by the p electrons of oxygen ions, while the conduction band bottom is formed by the d electrons of Pr3+ ions. The exact position of ZPL is determined via PL and PLE spectra at 77 K to be at 481 nm, and that enabled a correct assignment of luminescent bands. The maximum luminescent band in Pr2(SO4)3 belongs to the 3P0 → 3F2 transition at 640 nm. |
| |
Keywords: | praseodymium sulfate crystal structure thermal analysis thermal expansion anisotropy photoluminescence band structure vibrational properties |
|
|