A Novel Gelatin-Based Sustained-Release Molluscicide for Control of the Invasive Agricultural Pest and Disease Vector Pomacea canaliculata |
| |
Authors: | Jie Wang Yuntian Xing Yang Dai Yingnan Li Wenyan Xiang Jianrong Dai Fei Xu |
| |
Affiliation: | 1.Ministry of Education Key Laboratory of Industrial Biotechnology, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (J.W.); (Y.X.); (Y.L.);2.National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi 214064, China; (Y.D.); (W.X.); (J.D.) |
| |
Abstract: | Pomacea canaliculata, one of the 100 most destructive invasive species in the world, and it is an important intermediate host of Angiostrongylus cantonensis. The molluscicides in current use are an effective method for controlling snails. However, most molluscicides have no slow-release effect and are toxic to nontarget organisms. Thus, these molluscicides cannot be used on a large scale to effectively act on snails. In this study, gelatin, a safe and nontoxic substance, was combined with sustained-release molluscicide and was found to reduce the toxicity of niclosamide to nontarget organisms. We assessed the effects of gelatin and molluscicide in controlling P. canaliculata snails and eggs. The results demonstrated that the niclosamide retention time with 1.0% and 1.5% gelatin sustained-release agents reached 20 days. Additionally, the mortality rate of P. canaliculata and their eggs increased as the concentration of the niclosamide sustained-release agents increased. The adult mortality rate of P. canaliculata reached 50% after the snails were exposed to gelatin with 0.1 mg/L niclosamide for 48 h. The hatching rate of P. canaliculata was only 28.5% of the normal group after the treatment was applied. The sustained-release molluscicide at this concentration was less toxic to zebrafish, which means that this molluscicide can increase the safety of niclosamide to control P. canaliculata in aquatic environments. In this study, we explored the safety of using niclosamide sustained-release agents with gelatin against P. canaliculata. The results suggest that gelatin is an ideal sustained-release agent that can provide a foundation for subsequent improvements in control of P. canaliculata. |
| |
Keywords: | invasive species biological material carrier for sustained drug Pomacea canaliculata control environmental safety |
|
|