首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enthalpies of solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in different H-bonding solvents: Methanol, chloroform, and water. Group contribution method as applied to the polar oligomers
Authors:Vladimir P Barannikov  Sabir S Guseynov  Anatoliy I Vyugin
Institution:Institute of Solution Chemistry, Russian Academy of Sciences, Academicheskaya Str. 1, Ivanovo 153045, Russian Federation
Abstract:The enthalpies of solution and solvation of ethylene oxide oligomers CH3O(CH2CH2O)nCH3 (n = 1 to 4) in methanol and chloroform have been determined from calorimetric measurements at T = 298.15 K. The enthalpic coefficients of pairwise solute–solute interaction for methanol solutions have been calculated. The enthalpic characteristics of the oligomers in methanol, chloroform, water and tetrachloromethane have been compared. The hydrogen bonding of the oligomers with chloroform and water molecules is exhibited in the values of solvation enthalpy and coefficient of solute–solute interaction. This effect is not observed for methanol solvent. The thermochemical data evidence an existence of multi-centred hydrogen bonds in associates of polyethers with the solvent molecules. Enthalpies of hydrogen bonding of the oligomers with chloroform and water have been estimated. The additivity scheme has been developed to describe the enthalpies of solvation of ethylene oxide oligomers, unbranched monoethers and n-alkanes in chloroform, methanol, water, and tetrachloromethane. The correction parameters for contribution of repeated polar groups and correction term for methoxy-compounds have been introduced. The obtained group contributions permit to describe the enthalpies of solvation of unbranched monoethers and ethylene oxide oligomers in the solvents with standard deviation up to 0.6 kJ · mol−1. The values of group contributions and corrections are strongly influenced by solvent properties.
Keywords:Solvation enthalpy  Hydrogen bonding  Additivity method  Oligomers  Ethylene oxide  Glyme  Solvents
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号