Synthesis,Liquid‐Crystalline Properties,and Supramolecular Nanostructures of Dendronized Poly(isocyanide)s and Their Precursors |
| |
Abstract: | A series of novel dendronized π‐conjugated poly(isocyanide)s were synthesized successfully by using a Pd? Pt μ‐ethynediyl dinuclear complex ([ClPt{P(C2H5)3}2C?CPt{P(C2H5)3}2Cl]) as the initiator. The polymerizations of the dendronized monomers follow first‐order kinetics, indicating that living polymerization takes place. The obtained polymers exhibit narrow polydispersities in the range of 1.03–1.20. Thermal properties of the poly(isocyanide)s as well as their isocyanide monomers and precursors with formamido (HCONH‐) moieties as apexes were investigated by using differential scanning calorimetry (DSC), polarized optical microscopy (POM) and wide‐angle X‐ray diffraction (WAXD). Both the peripheries and the apex groups of the dendrons affect the formation of supramolecular column and/or cubic phases of the precursors and monomers. The formamido precursor forms a liquid‐crystalline phase due to intermolecular hydrogen bonding. The isocyanide monomer lacks this hydrogen‐bonding ability and does not display an organized mesophase. All of the rigid poly(isocyanide)s with the monodendrons exhibit columnar liquid‐crystalline phases. Interestingly, cylindrical structures of a poly(isocyanide) were directly visualized by using transmission electron microscopy (TEM). |
| |
Keywords: | dendrimers liquid crystals living polymerization nanostructures polymers |
|
|