首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ring‐Opening Polymerization of Lactide with Group 3 Metal Complexes Supported by Dianionic Alkoxy‐Amino‐Bisphenolate Ligands: Combining High Activity,Productivity, and Selectivity
Abstract:A series of new alkoxy‐amino‐bis(phenols) (H2L 1 – 6 ) has been synthesized by Mannich condensations of substituted phenols, formaldehyde, and amino ethers or diamines. The coordination properties of these dianionic ligands towards yttrium, lanthanum, and neodymium have been studied. The resulting Group 3 metal complexes have been used as initiators for the ring‐opening polymerization of rac‐lactide to provide poly(lactic acid)s (PLAs). The polymerizations are living, as evidenced by the narrow polydispersities of the isolated polymers, together with the linear natures of number average molecular weight versus conversion plots and monomer‐to‐catalyst ratios. Complex Y(L 6 ){N(SiHMe2)2}(THF)] ( 17 ) polymerized rac‐lactide to heterotactic PLA (Pr = 0.90 at 20 °C) and meso‐lactide to syndiotactic PLA (Pr = 0.75 at 20 °C). The in situ formation of Y(L 6 )(OiPr)(THF)] ( 18 ) from 17 and 2‐propanol resulted in narrower molecular weight distributions (PDI = 1.06). With complex 18 , highly heterotactic PLAs with narrow molecular weight distributions were obtained with high activities and productivities at room temperature. The natures of the ligand substituents were shown to have a significant influence on the degree of control of the polymerizations, and in particular on the tacticity of the polymer.
Keywords:biodegradable polymers  lactide  lanthanides  polymerization  tacticity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号